Merge remote-tracking branch 'upstream/qdrant-search-2' into spc2

This commit is contained in:
Moon Man 2024-05-19 14:15:06 +00:00
commit a5b041c03b
14 changed files with 239 additions and 30 deletions

View File

@ -0,0 +1 @@
Add Qdrant/OpenAI embedding search

View File

@ -913,9 +913,10 @@
config :pleroma, Pleroma.Search.QdrantSearch,
qdrant_url: "http://127.0.0.1:6333/",
qdrant_api_key: nil,
ollama_url: "http://127.0.0.1:11434",
ollama_model: "snowflake-arctic-embed:xs",
qdrant_api_key: "",
openai_url: "http://127.0.0.1:11345",
openai_model: "snowflake/snowflake-arctic-embed-xs",
openai_api_key: "",
qdrant_index_configuration: %{
vectors: %{size: 384, distance: "Cosine"}
}

View File

@ -12,9 +12,27 @@ While it has no external dependencies, it has problems with performance and rele
## QdrantSearch
This uses the vector search engine [Qdrant](https://qdrant.tech) to search the posts in a vector space. This needs a way to generate embeddings, for now only the [Ollama](Ollama) api is supported.
This uses the vector search engine [Qdrant](https://qdrant.tech) to search the posts in a vector space. This needs a way to generate embeddings and uses the [OpenAI API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings). This is implemented by several project besides OpenAI itself, including the python-based fastembed-server found in `supplemental/search/fastembed-api`.
The default settings will support a setup where both Ollama and Qdrant run on the same system as pleroma. The embedding model used by Ollama will need to be pulled first (e.g. `ollama pull snowflake-arctic-embed:xs`) for the embedding to work.
The default settings will support a setup where both the fastembed server and Qdrant run on the same system as pleroma. To use it, set the search provider and run the fastembed server, see the README in `supplemental/search/fastembed-api`:
> config :pleroma, Pleroma.Search, module: Pleroma.Search.QdrantSearch
Then, start the Qdrant server, see [here](https://qdrant.tech/documentation/quick-start/) for instructions.
You will also need to create the Qdrant index once by running `mix pleroma.search.indexer create_index`. Running `mix pleroma.search.indexer index` will retroactively index the last 100_000 activities.
### Indexing and model options
To see the available configuration options, check out the QdrantSearch section in `config/config.exs`.
The default indexing option work for the default model (`snowflake-arctic-embed-xs`). To optimize for a low memory footprint, adjust the index configuration as described in the [Qdrant docs](https://qdrant.tech/documentation/guides/optimize/). See also [this blog post](https://qdrant.tech/articles/memory-consumption/) that goes into detail.
Different embedding models will need different vector size settings. You can see a list of the models supported by the fastembed server [here](https://qdrant.github.io/fastembed/examples/Supported_Models), including their vector dimensions. These vector dimensions need to be set in the `qdrant_index_configuration`.
E.g, If you want to use `sentence-transformers/all-MiniLM-L6-v2` as a model, you will not need to adjust things, because it and `snowflake-arctic-embed-xs` are both 384 dimensional models. If you want to use `snowflake/snowflake-arctic-embed-l`, you will need to adjust the `size` parameter in the `qdrant_index_configuration` to 1024, as it has a dimension of 1024.
When using a different model, you will need do drop the index and recreate it (`mix pleroma.search.indexer drop_index` and `mix pleroma.search.indexer create_index`), as the different embeddings are not compatible with each other.
## Meilisearch

View File

@ -9,9 +9,23 @@ defmodule Mix.Tasks.Pleroma.Search.Indexer do
alias Pleroma.Workers.SearchIndexingWorker
def run(["create_index"]) do
Application.ensure_all_started(:pleroma)
start_pleroma()
Pleroma.Config.get([Pleroma.Search, :module]).create_index()
with :ok <- Pleroma.Config.get([Pleroma.Search, :module]).create_index() do
IO.puts("Index created")
else
e -> IO.puts("Could not create index: #{inspect(e)}")
end
end
def run(["drop_index"]) do
start_pleroma()
with :ok <- Pleroma.Config.get([Pleroma.Search, :module]).drop_index() do
IO.puts("Index dropped")
else
e -> IO.puts("Could not drop index: #{inspect(e)}")
end
end
def run(["index" | options]) do

View File

@ -48,6 +48,12 @@ def add_to_index(_activity), do: :ok
@impl true
def remove_from_index(_object), do: :ok
@impl true
def create_index, do: :ok
@impl true
def drop_index, do: :ok
def maybe_restrict_author(query, %User{} = author) do
Activity.Queries.by_author(query, author)
end

View File

@ -10,6 +10,12 @@ defmodule Pleroma.Search.Meilisearch do
@behaviour Pleroma.Search.SearchBackend
@impl true
def create_index, do: :ok
@impl true
def drop_index, do: :ok
defp meili_headers do
private_key = Config.get([Pleroma.Search.Meilisearch, :private_key])

View File

@ -1,28 +1,40 @@
defmodule Pleroma.Search.QdrantSearch do
@behaviour Pleroma.Search.SearchBackend
import Ecto.Query
alias Pleroma.Activity
alias Pleroma.Activity
alias Pleroma.Config.Getting, as: Config
alias __MODULE__.OpenAIClient
alias __MODULE__.QdrantClient
alias __MODULE__.OllamaClient
import Pleroma.Search.Meilisearch, only: [object_to_search_data: 1]
@impl true
def create_index() do
payload = Pleroma.Config.get([Pleroma.Search.QdrantSearch, :qdrant_index_configuration])
QdrantClient.put("/collections/posts", payload)
def create_index do
payload = Config.get([Pleroma.Search.QdrantSearch, :qdrant_index_configuration])
with {:ok, %{status: 200}} <- QdrantClient.put("/collections/posts", payload) do
:ok
else
e -> {:error, e}
end
end
def drop_index() do
QdrantClient.delete("/collections/posts")
@impl true
def drop_index do
with {:ok, %{status: 200}} <- QdrantClient.delete("/collections/posts") do
:ok
else
e -> {:error, e}
end
end
def get_embedding(text) do
with {:ok, %{body: %{"embedding" => embedding}}} <-
OllamaClient.post("/api/embeddings", %{
prompt: text,
model: Pleroma.Config.get([Pleroma.Search.QdrantSearch, :ollama_model])
with {:ok, %{body: %{"data" => [%{"embedding" => embedding}]}}} <-
OpenAIClient.post("/v1/embeddings", %{
input: text,
model: Config.get([Pleroma.Search.QdrantSearch, :openai_model])
}) do
{:ok, embedding}
else
@ -42,10 +54,11 @@ defp build_index_payload(activity, embedding) do
}
end
defp build_search_payload(embedding) do
defp build_search_payload(embedding, options) do
%{
vector: embedding,
limit: 20
limit: options[:limit] || 20,
offset: options[:offset] || 0
}
end
@ -71,12 +84,28 @@ def add_to_index(activity) do
end
@impl true
def search(_user, query, _options) do
def remove_from_index(object) do
activity = Activity.get_by_object_ap_id_with_object(object.data["id"])
id = activity.id |> FlakeId.from_string() |> Ecto.UUID.cast!()
with {:ok, %{status: 200}} <-
QdrantClient.post("/collections/posts/points/delete", %{"points" => [id]}) do
:ok
else
e -> {:error, e}
end
end
@impl true
def search(_user, query, options) do
query = "Represent this sentence for searching relevant passages: #{query}"
with {:ok, embedding} <- get_embedding(query),
{:ok, %{body: %{"result" => result}}} <-
QdrantClient.post("/collections/posts/points/search", build_search_payload(embedding)) do
QdrantClient.post(
"/collections/posts/points/search",
build_search_payload(embedding, options)
) do
ids =
Enum.map(result, fn %{"id" => id} ->
Ecto.UUID.dump!(id)
@ -92,24 +121,26 @@ def search(_user, query, _options) do
[]
end
end
@impl true
def remove_from_index(_object) do
:ok
end
end
defmodule Pleroma.Search.QdrantSearch.OllamaClient do
defmodule Pleroma.Search.QdrantSearch.OpenAIClient do
use Tesla
alias Pleroma.Config.Getting, as: Config
plug(Tesla.Middleware.BaseUrl, Pleroma.Config.get([Pleroma.Search.QdrantSearch, :ollama_url]))
plug(Tesla.Middleware.BaseUrl, Config.get([Pleroma.Search.QdrantSearch, :openai_url]))
plug(Tesla.Middleware.JSON)
plug(Tesla.Middleware.Headers, [
{"Authorization",
"Bearer #{Pleroma.Config.get([Pleroma.Search.QdrantSearch, :openai_api_key])}"}
])
end
defmodule Pleroma.Search.QdrantSearch.QdrantClient do
use Tesla
alias Pleroma.Config.Getting, as: Config
plug(Tesla.Middleware.BaseUrl, Pleroma.Config.get([Pleroma.Search.QdrantSearch, :qdrant_url]))
plug(Tesla.Middleware.BaseUrl, Config.get([Pleroma.Search.QdrantSearch, :qdrant_url]))
plug(Tesla.Middleware.JSON)
plug(Tesla.Middleware.Headers, [

View File

@ -26,4 +26,9 @@ defmodule Pleroma.Search.SearchBackend do
Create the index
"""
@callback create_index() :: :ok | {:error, any()}
@doc """
Drop the index
"""
@callback drop_index() :: :ok | {:error, any()}
end

View File

@ -0,0 +1,9 @@
FROM python:3.9
WORKDIR /code
COPY fastembed-server.py /workdir/fastembed-server.py
COPY requirements.txt /workdir/requirements.txt
RUN pip install -r /workdir/requirements.txt
CMD ["python", "/workdir/fastembed-server.py"]

View File

@ -0,0 +1,6 @@
# About
This is a minimal implementation of the [OpenAI Embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) meant to be used with the QdrantSearch backend.
# Usage
The easiest way to run it is to just use docker compose with `docker compose up`. This starts the server on the default configured port. Different models can be used, for a full list of supported models, check the [fastembed documentation](https://qdrant.github.io/fastembed/examples/Supported_Models/). The first time a model is requested it will be downloaded, which can take a few seconds.

View File

@ -0,0 +1,5 @@
services:
web:
build: .
ports:
- "11345:11345"

View File

@ -0,0 +1,23 @@
from fastembed import TextEmbedding
from fastapi import FastAPI
from pydantic import BaseModel
models = {}
app = FastAPI()
class EmbeddingRequest(BaseModel):
model: str
input: str
@app.post("/v1/embeddings")
def embeddings(request: EmbeddingRequest):
model = models.get(request.model) or TextEmbedding(request.model)
models[request.model] = model
embeddings = next(model.embed(request.input)).tolist()
return {"data": [{"embedding": embeddings}]}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=11345)

View File

@ -0,0 +1,4 @@
fastapi==0.111.0
fastembed==0.2.7
pydantic==1.10.15
uvicorn==0.29.0

View File

@ -0,0 +1,80 @@
# Pleroma: A lightweight social networking server
# Copyright © 2017-2021 Pleroma Authors <https://pleroma.social/>
# SPDX-License-Identifier: AGPL-3.0-only
defmodule Pleroma.Search.QdrantSearchTest do
use Pleroma.DataCase, async: true
use Oban.Testing, repo: Pleroma.Repo
import Pleroma.Factory
import Mox
alias Pleroma.Search.QdrantSearch
alias Pleroma.UnstubbedConfigMock, as: Config
alias Pleroma.Web.CommonAPI
alias Pleroma.Workers.SearchIndexingWorker
describe "Qdrant search" do
test "indexes a public post on creation, deletes from the index on deletion" do
user = insert(:user)
Tesla.Mock.mock(fn
%{method: :post, url: "https://openai.url/v1/embeddings"} ->
send(self(), "posted_to_openai")
Tesla.Mock.json(%{
data: [%{embedding: [1, 2, 3]}]
})
%{method: :put, url: "https://qdrant.url/collections/posts/points", body: body} ->
send(self(), "posted_to_qdrant")
assert match?(%{"points" => [%{"vector" => [1, 2, 3]}]}, Jason.decode!(body))
Tesla.Mock.json("ok")
%{method: :post, url: "https://qdrant.url/collections/posts/points/delete"} ->
send(self(), "deleted_from_qdrant")
Tesla.Mock.json("ok")
end)
Config
|> expect(:get, 6, fn
[Pleroma.Search, :module], nil ->
QdrantSearch
[Pleroma.Search.QdrantSearch, key], nil ->
%{
openai_model: "a_model",
openai_url: "https://openai.url",
qdrant_url: "https://qdrant.url"
}[key]
end)
{:ok, activity} =
CommonAPI.post(user, %{
status: "guys i just don't wanna leave the swamp",
visibility: "public"
})
args = %{"op" => "add_to_index", "activity" => activity.id}
assert_enqueued(
worker: SearchIndexingWorker,
args: args
)
assert :ok = perform_job(SearchIndexingWorker, args)
assert_received("posted_to_openai")
assert_received("posted_to_qdrant")
{:ok, _} = CommonAPI.delete(activity.id, user)
delete_args = %{"op" => "remove_from_index", "object" => activity.object.id}
assert_enqueued(worker: SearchIndexingWorker, args: delete_args)
assert :ok = perform_job(SearchIndexingWorker, delete_args)
assert_received("deleted_from_qdrant")
end
end
end